- Сообщения
- 1 889
- Реакции
- 57
Последние темы автора:
- #1
Голосов: 0
Автор: Нетология - Алексей Кузьмин, Денис Волк
Название: Математика для анализа данных
Чтобы увидеть в больших объёмах данных закономерности, аналитик опирается на линейную алгебру, математический анализ и теорию вероятности. Если специалист не разбирается в этих направлениях — гипотезы и выводы будут неточными. Это как запустить ракету в космос, не зная траекторию полёта.
Мы создали вводный курс в математику, чтобы вы начали исследовать данные с важным бэкграундом для Data Science и выбирали алгоритмы, которые будут решать поставленную задачу.
Результат обучения
- Проверять векторы на линейную зависимость.
- Решать системы линейных уравнений в матричной форме.
- Вычислять собственные векторы и числа для матрицы.
- Производить матричные разложения.
- Вычислять производную функции нескольких аргументов.
- Использовать различные методы оптимизации для поиска локального минимума функции.
- Вычислять математическое ожидание и дисперсию дискретной случайной величины.
- Использовать формулу Байеса для вычисления апостериорной вероятности.
- Использовать закон больших чисел для оценки математического ожидания.
Продажник:
Название: Математика для анализа данных
Чтобы увидеть в больших объёмах данных закономерности, аналитик опирается на линейную алгебру, математический анализ и теорию вероятности. Если специалист не разбирается в этих направлениях — гипотезы и выводы будут неточными. Это как запустить ракету в космос, не зная траекторию полёта.
Мы создали вводный курс в математику, чтобы вы начали исследовать данные с важным бэкграундом для Data Science и выбирали алгоритмы, которые будут решать поставленную задачу.
Результат обучения
- Проверять векторы на линейную зависимость.
- Решать системы линейных уравнений в матричной форме.
- Вычислять собственные векторы и числа для матрицы.
- Производить матричные разложения.
- Вычислять производную функции нескольких аргументов.
- Использовать различные методы оптимизации для поиска локального минимума функции.
- Вычислять математическое ожидание и дисперсию дискретной случайной величины.
- Использовать формулу Байеса для вычисления апостериорной вероятности.
- Использовать закон больших чисел для оценки математического ожидания.
Продажник:
Скрытый контент, чтобы его посмотреть необходимо быть авторизованным.
Скачать курс - Математика для анализа данных - Нетология (2020):
Авторизуйтесь, чтобы посмотреть скрытый контент.
- Кастомный h1
- Слив курса Математика для анализа данных - Нетология (2020)